

Bst DNA Polymerase (Large Fragment, exo⁻)

(Bacillus stearothermophilus)

Cat. No.	size	
E1078-01	1600 units	
E1078-02	8000 units	

Unit Definition: One unit is defined as the amount of enzyme required to incorporate 10 nmoles of total deoxyribonucleotide into acid-insoluble material in 30 minutes at 65°C.

Storage Conditions: Store at -20°C.

References:

- 1. Stenesh, J. and Roe, B.A. (1972) Biochim. Biophys. Acta. 272, 156-166.
- 2. Hugh, G. and Griffin, M. (1994) PCR Technology, p.p. 228-229.
- 3.McClary, J. et al. (1991) J. DNA Sequencing and Mapping, p.p.173-180.

Large exonuclease $5'\rightarrow 3'$ free fragment of thermophilic Bst DNA Polymerase with strand displacement activity.

Description:

- Bst DNA Polymerase is a moderately thermostable enzyme from Bacillus stearothermophilus.
- Ultrapure, recombinant protein.
- The enzyme replicates DNA optimally at 65°C.
- Catalyzes the polymerization of nucleotides into duplex DNA in the 5´→3´ direction in the presence of magnesium ions.
- Lacks the $5' \rightarrow 3'$ exonuclease activity, while retaining the polymerase activity (1).
- Broad activity range; can replace mezophilic polymerases as well as synthesize DNA at high temperatures. Thus it is suitable for amplification of difficult DNA templates, including repetitive sequences, GC-rich regions and problematic secondary structures (2, 3).
- Can be heat inactivated at temperatures above 80°C.
- Active over wide range of reaction buffer conditions and magnesium ions concentrations.
- Used in isothermal DNA sequencing at elevated temperatures.
- Ideal for DNA synthesis reactions requiring strand displacement.
- Used in isothermal nucleic acids amplification.

Storage Buffer:

10 mM Tris-HCl (pH 7.2 at 20°C), 50 mM KCl, 0.1 mM EDTA, 0.1% TergitolTM TMN, 1 mM DTT and 50% (v/v) glycerol.

1X Bst DNA Polymerase Reaction Buffer:

50 mM Tris-HCl (pH 8.9 at 20°C), 10 mM (NH₄) $_2$ SO₄, 10 mM KCl, 2 mM MgSO₄, 0.1% Tergitol TM TMN.

Quality Control:

All preparations are assayed for contaminating endonuclease, exonuclease, and single and double-stranded DNase activities.

Protocol:

Typical LAMP (Loop-mediated isothermal amplification) reaction:

- 1. Reactions should be setup on ice. Pipet with sterile filter tips and make the reaction mix in an area separate from DNA preparation or analysis. No-template controls should be included in all amplification sets.
- 2. Prepare LAMP Primer Mix with all 4 or 6 (with Loop) primers. 10X Primer Mix should contain: 16 μ M FIP, 16 μ M BIP, 2 μ M F3, 2 μ M B3, 4 μ M LoopF, 4 μ M LoopB in TE or water.
- 3. Use a specific detection instrument for isothermal amplification or a real -time PCR cycler to run the assays. Real-time detection of the DNA amplification with a fluorescent dye is highly recommended.
- 4. Set the instrument to a constant incubation temperature between 60 to 65°C (depending on the primer annealing temperature). Measure the fluorescence intensity at an interval of 1 minute for up to 30 min.

Δσ	Hi	Hi	nna	l in	for	mat	ion:
\neg	ш		Jila		IVI	ıııaı	IVII.

- 1. If reaction optimization is needed:
 - Change Mg²⁺ concentration in a range of 4–10 mM.
 - Choose a different enzyme concentration (0.040–0.4 U/μl).
 - Set other reaction temperature (50 to 68°C).
 - Extend the reaction time. (Prelonged incubation may cause amplification of unspecifically annealed primers or primer dimer formations).
- 1. For difficult DNA templates pre-warm the reaction mix **witout enzyme** at 92°C for 1 min. Cool down to room temperature, then add the Bst DNA Polymerase, mix well, centrifuge and place tubes into a pre-heated thermocycler or heat block.
- 2. If amplification in no-template controls occurs the following points should be reviewed.
 - Replace reagent stocks and pre-mixes with new components.
 - Use separate preparation area and equipment if post-reaction processing is necessary.
 - Avoid opening reaction tubes after amplification.

	25 μl reaction	Final concentration	
10X Bst DNA Polymerase Reaction Buffer	2.5 μΙ	1X (contains 2mM MgSO ₄)	
MgSO ₄ (100 mM)	1.5 μΙ	6 mM (8 mM total)	
dNTPs (10mM)	3.5 μΙ	1.4 mM each	
10X LAMP Primer Mix	2,5 μΙ	1X	
Bst DNA Polymerase (8 U/μl)	1 μΙ	0.32 U/μl	
DNA sample	variable	100 copies or more	
PCR-grade water	up to 25 μl		