

phi29 Polymerase

Description:

phi29 DNA Polymerase catalyzes a highly processive DNA synthesis (up to 70,000 base insertions per binding event) coupled to strand displacement activity⁽¹⁾. It possesses an inherent 3'-5' exonuclease activity⁽²⁾ acting preferentially on single-stranded DNA.

Source:

A recombinant E. coli strain carrying the phi29 DNA Polymerase gene from bacteriophage phi29.

Unit definition:

1 unit is defined as the amount of polymerase required to convert 0.5 pmol of dTTP into acid insoluble material in 10 minutes at 30°C.

Components:

Component	Cat. No. E1401-01 250 units	Cat. No. E1401-02 1250 units
10u/μl phi29 DNA Polymerase	25 μΙ	125 μΙ
10x phi29 DNA Pol Reaction Buffer	100 μΙ	1 x 500 μl
100x BSA non-acetylated (20mg/ml)	10 μΙ	50 μΙ

10x phi29 DNA Polymerase Reaction Buffer: 500 mM Tris-HCl, 100 mM (NH₄)₂SO₄, 40 mM DTT, 100 mM MgCl₂, pH 7.5 @ 25°C

Notes:

- 1. DTT contained in the reaction buffer degrades over time. It is recommended to supplement 10x reaction buffer that is older than 6 months with 1M DTT to a final concentration of 40 mM (in 10x reaction buffer).
- 2. Use 0,2 mg/ml non-acetylated BSA in 1x reaction buffer is recommended.

References:

- 1. Blanco, L. et al. (1989) J. Biol. Chem., 264, 8935-8940.
- 2. Garmendia, C. et al. (1992) J. Biol. Chem., 267, 2594-2599.