


# NXT tiTaq PCR Kit

| Cat. No. | size                        |  |
|----------|-----------------------------|--|
| E2535-01 | 100 reactions of 20 $\mu l$ |  |
| E2535-02 | 200 reactions of 20 $\mu l$ |  |
| E2535-03 | 500 reactions of 20 $\mu l$ |  |

# Storage Conditions: Store at -20°C.



Fast PCR amplification using EURx NXT tiTaq PCR Kit. A 2.5 kb amplicon of the human CCR5 gene was amplified with NXT tiTaq PCR Kit and fast-cycling PCR kits from two another suppliers.

Lane M: molecular size marker- Perfect 1 kb DNA Ladder.

Lanes 1, 2: PCR amplification reactions using EURx NXT tiTaq PCR Kit.

Lanes 3, 4: PCR amplification reactions using a fast-cycling PCR kit from Supplier 1.

Lanes 5, 6: PCR amplification reactions using a fast-cycling PCR kit from Supplier 2.

PCR program:

95°C 5 min

96°C 5 s

62°C 5 s

68°C 1 min 15 s

x35

72°C 1 min

# **Description:**

- NXT tiTaq PCR Kit is designed for fast-cycling PCR on any thermal cycler.
- NXT tiTaq PCR Kit shortens PCR cycling time without affecting the yield and PCR performance.
- The annealing and extension steps require 5 s and 3 s per 100 bp respectively.
- PCR does not require redesigning of primers.
- NXT tiTaq PCR Kit is a ready-to-use solution containing hot start NXT tiTaq DNA Polymerase, reaction buffer, MgCl<sub>2</sub> and dNTPs.
- NXT tiTaq DNA Polymerase contains a new generation "hot start" enzyme that is blocked at moderate temperatures and allows room temperature reactions setup.
- The polymerase activity is restored during normal cycling conditions.
- "Hot start" PCR may increase specificity, sensitivity and yield of a PCR reaction in comparison to the conventional PCR assembly method.
- NXT tiTaq DNA Polymerase replicates DNA at 72°C and exhibits a half-life of 40 min at 95°C.
- Contains the  $5' \rightarrow 3'$  exonuclease activity.
- Lacks the 3'→5' exonuclease activity.
- Adds extra A at the 3' ends.
- NXT tiTaq PCR Kit is supplied with 10 x Color Load solution which allows for direct loading PCR reactions on the gel.
- NXT tiTaq PCR Kit allows to obtain a wide range of PCR products up to 4 kb and 10 kb from complex genomic or episomal DNA respectively.

## NXT tiTaq PCR Kit contains:

- NXT tiTaq PCR Master Mix (2x)
- Water, nuclease free
- 10 x Color Load

# NXT tiTaq PCR Master Mix (2x):

NXT tiTaq PCR Master Mix (2x) contains NXT tiTaq DNA Polymerase, optimized reaction buffer,  $MgCl_2$  and dNTPs.

## 10 x Color Load:

10 x Color Load contains two gel tracking dyes and a gel loading reagent. It enables direct loading of PCR products onto an agarose gel.

# **Quality Control:**

All preparations are assayed for contaminating endonuclease, 3'-exonuclease, and nonspecific single- and double-stranded DNase activities. Typical preparations are greater than 95% pure, as judged by SDS polyacrylamide gel electrophoresis.

# **Preparation of PCR Reaction:**

| Component                        | Volume/reaction | Final concentration |  |
|----------------------------------|-----------------|---------------------|--|
| NXT tiTaq PCR Master<br>Mix (2x) | 10 µl           | 1 x                 |  |
| Upstream primer                  | Variable        | 0.5 μΜ              |  |
| Downstream primer                | Variable        | 0.5 μΜ              |  |
| Optional:                        | 2               | 1 x                 |  |
| 10 x Color Load                  | 2 μΙ            | ΤX                  |  |
| Template DNA                     | Variable        | <0.2 μg/20 μl       |  |
| Sterile double-distilled water   | Το 20 μΙ        | -                   |  |
| Total volume                     | 20 µl           | -                   |  |

#### Notes:

- Do not use reaction volumes larger than 20 µl as this will interfere with the optimal temperature gradient required for successful results.
- Thaw, gently vortex and briefly centrifuge NXT tiTaq PCR Master Mix (2x), primers, DNA template before use to avoid localized differences in salt concentration.
- Set up PCR reactions at room temperature.
- Primers can be added separately or as a primer mix prepared previously.
- Vortex the samples and briefly spin down.
- Reactions can be placed in a room temperature thermal cycler.
- Use of 10 x Color Load allows PCR reactions to be loaded directly on the gel without prior addition of a gel loading buffer. 10 x Color Load contains a gel loading reagent and two tracking dyes (a red dye and a yellow dye) that separate during electrophoresis. The red dye migrates at the same rate as 600 bp DNA fragment and the yellow dye migrates faster than 20 bp in a 1% agarose gel. The dyes do not interfere with most downstream enzymatic applications, however it is recommended to purify PCR products prior enzymatic manipulation.
- In most cases there is no need to add additives to the PCR reaction. For some difficult targets such as: GC-rich sequences, sequences with complex secondary structures additives such as DMSO can be added to improve amplification. Use DMSO in concentrations of 2-8%. The recommended starting DMSO concentration (if needed) is 3%.
- As a general guide for how much template DNA to use, start with a minimum  $10^4$  copies of the target sequence to obtain a signal in 25-35 cycles (i.e. 1 µg of 1 kb ds DNA equals 9.1 x  $10^{11}$  molecules, 1 µg of *E. coli* genomic DNA equals 2 x  $10^8$  molecules, 1 µg of human genomic DNA equals 3 x  $10^5$  molecules).

# **Thermal Cycling Conditions:**

| Step                    | Temperature | Time       | Number of Cycles |
|-------------------------|-------------|------------|------------------|
| Initial<br>Denaturation | 95°C        | 2-5 min    | 1                |
| Denaturation            | 96°C        | 5 s        | 25-40            |
| Annealing               | 50-68°C     | 5 s        |                  |
| Extension               | 68°C        | 3 s/100 bp |                  |
| Final Extension         | 72°C        | 1 min      | 1                |
| Cooling                 | 2-8°C       | Indefinite | 1                |

## Notes:

- 1. For comlex genomic DNA and GC-rich templates 5-min initial denaturation is strongly recommended.
- 2. Annealing temperature should be optimized for each primer set based on the primer  $T_{\rm m}.$  Optimal annealing temperatures may be above or below the estimated  $T_{\rm m}.$  As a starting point, use an annealing temperature 5°C below  $T_{\rm m}.$

This product is developed, designed and sold exclusively for research purposes and in vitro use only. EURx Ltd. 80-297 Gdańsk Poland ul. Przyrodników 3, NIP 957-07-05-191, KRS 0000202039 www.eurx.com.pl, orders@eurx.com.pl, *tel.* +48 58 524 06 97, *fax* +48 58 341 74 23