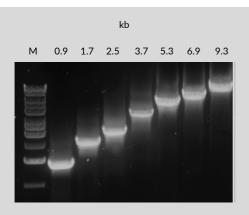
EURX MOLECULAR BIOLOGY PRODUCTS


Color Perpetual Taq DNA Polymerase HOT START

Color traced monoclonal antibody automatic "hot start"

Cat. No.	size	
E2710-01	200 units	
E2710-04	500 units	
E2710-02	1000 units	
E2710-03	5000 units	

Unit Definition: One unit is defined as the amount of enzyme required to catalyze the incorporation of 10 nmoles of dNTP into acid-insoluble material in 30 minutes at 74°C. The reaction conditions are: 50 mM Tris-HCl (pH 9.0 at 25°C), 50 mM NaCl, 5 mM MgCl₂, 200 μ M each of dATP, dCTP, dGTP, dTTP (a mix of unlabeled and [³H]dTTP), 10 μ g activated calf thymus DNA and 0.1 mg/ml BSA in a final volume of 50 μ l.

Storage Conditions: Store at -20°C.

PCR amplification using EURx Color Perpetual Taq DNA Polymerase.

Lane M: molecular size marker-Perfect 1 kb DNA Ladder.

Lanes 0.9-9.3 kb: PCR amplification reactions, using Pol Buffer B with 0.2 mM dNTPs and 1.25 U EURx Color Perpetual Taq DNA Polymerase in 50 µl reaction volume.

References:

- 1. Chien, A., Edgar, D.B. and Trela, J.M. (1976) J. Bacteriol. 127, 1550.
- 2. Kaledin, A.S., Sliusarenko, A.G. and Gorodetskii, S.I. (1980) Biokhimiya 45, 644.

Pre-complexed with specific anti-Taq monoclonal antibody, top quality thermophilic Taq DNA polymerase for automatic "hot start" PCR, resulting in greatly enhanced amplification specificity, sensitivity and yield.

The enzyme is supplemented with two inert gel tracking dyes.

Description:

- Ultrapure, recombinant Taq DNA Polymerase is reversibly complexed with anti-Taq monoclonal antibody that blocks replication activity of the enzyme at moderate temperatures.
- Our carefully selected anti-Taq antibodies have high thermal stability, providing protection against non-specific primer extension from room temperature to 70°C.
- The polymerase activity is restored during the initial denaturation step when amplification reactions are heated at 94-95°C for two minutes.
- Formation of complexes between Taq DNA Polymerase and an anti-Taq antibody forms a basis for automatic "hot start" PCR, which allows for the assembly of PCR reactions at room temperature.
- High stability of the complexes allows for the enormous increase of PCR specificity, sensitivity and yield in comparison to the conventional PCR assembly method.
- Automatic "hot start" PCR is a fast and convenient method when assembling multiple PCR reactions.
- Both increased specificity and reduced mispriming improve multiplex PCR.
- Eliminated risk of template cross-contamination and assured safe laboratory practice, due to removed necessity to open hot tubes.
- Thermostable Taq DNA Polymerase replicates DNA at 74°C and exhibits a half-life of 40 min at 95°C (1,2).
- Catalyzes the polymerization of nucleotides into duplex DNA in the 5' \rightarrow 3' direction in the presence of magnesium ions.
- Contains the $5' \rightarrow 3'$ exonuclease activity.
- Lacks the $3' \rightarrow 5'$ exonuclease activity.
- Adds extra A at the 3' ends.
- Color Perpetual Taq DNA Polymerase is recommended for use in PCR and primer extension reactions at elevated temperatures to obtain a wide range of DNA products up to 10 kb.
- Use of Color Perpetual Taq DNA Polymerase offers several advantages:
 - visualizes the addition of the polymerase to the reaction,
 - confirms complete mixing,
 - enables direct loading of PCR products onto an agarose gel without addition of a gel loading buffer,
 - the added dyes allow to track electrophoresis progress,
 - the dyes do not affect PCR performance,
 - do not interfere with most downstream applications (exception: the polymerase is not recommended for any downstream applications using absorbance or fluorescence excitation).

Storage Buffer:

20 mM Tris-HCl (pH 8.0 at 22°C), 100 mM KCl, 0.1 mM EDTA, 1 mM dithiothreitol, 50% glycerol and stabilizers.

10 x Reaction Buffers:

10 x Pol Buffer A (optimization buffer without MgCl₂):

The buffer allows to optimize $MgCl_2$ concentration.

10 x Pol Buffer B (general application, up to 10 kb):

The buffer contains 15 mM $MgCl_2$ and is optimized for use with 0.2 mM of each dNTP.

Quality Control:

All preparations are assayed for contaminating endonuclease, 3'-exonuclease, and nonspecific single- and double-stranded DNase activities. Typical preparations are greater than 95% pure, as judged by SDS polyacrylamide gel electrophoresis.

This product is developed, designed and sold exclusively for research purposes and in vitro use only. EURx Ltd. 80-297 Gdańsk Poland ul. Przyrodników 3, NIP 957-07-05-191, KRS 0000202039 www.eurx.com.pl, orders@eurx.com.pl, *tel.* +48 58 524 06 97, *fax* +48 58 341 74 23

Preparation of PCR Reaction:

Component	Volume/reaction	Final concentration
10 x Pol Buffer A or 10 x Pol Buffer B	5 μΙ	1x
25 mM MgCl ₂	2-10 μl when using 10 x Pol Buffer A 0 μl when using 10 x Pol Buffer B	1-5 mM 1.5 mM
dNTP mix (5 mM each)	2 μl	0.2 mM of each dNTP
Upstream primer	Variable	0.1-0.5 μΜ
Downstream primer	Variable	0.1-0.5 μΜ
Color Perpetual Taq DNA Polymerase, 1 U/µl	1.25 μΙ	1.25 U
Template DNA	Variable	<0.5 μg/50 μl
Sterile double-distilled water	Variable	-
Total volume	50 µl	-

Thermal Cycling Conditions

Step	Temperature	Time	Number of Cycles
Initial Denaturation	94-95°C	2-5 min	1
Denaturation	94-95°C	15-60 s	25-35
Annealing	50-68°C	30-60 s	
Extension	72°C	1 min/1 kb	
Final Extension	72°C	7 min	1
Cooling	4°C	Indefinite	1

Notes:

- 1. Completely thaw and mix thoroughly all components of PCR reaction before use to avoid localized differences in salt concentration. It is especially important for magnesium solutions, because they form concentration gradient when frozen.
- 2. Prepare reaction mixes at room temperature, mix well. Use of Color Perpetual Taq DNA Polymerase allows room temperature reaction setup.
- 3. Reactions can be placed in a room temperature thermal cycler.
- 4. Standard concentration of $MgCl_2$ in PCR reaction is 1.5 mM (as provided with the 1 x Pol Buffer B) when using 0.2 mM dNTP (each). In most cases this concentration will produce satisfactory results. However, in some cases, reaction may be improved by determining optimal concentration of $MgCl_2$.
- 5. Use of Color Perpetual Taq DNA Polymerase allows PCR reactions to be loaded directly onto an agarose gel without prior addition of a gel loading buffer. The polymerase contains two gel tracking dyes (a red dye and a yellow dye) that separate during electrophoresis. In a 1% agarose gel, the red dye migrates at the same rate as 600 bp DNA fragment and the yellow dye migrates faster than 20 bp. The dyes do not interfere with most downstream enzymatic applications, however it is recommended to purify PCR products prior enzymatic manipulation.
- 6. 1.25 U of Color Perpetual Taq DNA Polymerase is recommended concentration of the enzyme per 50 μ l amplification reaction. For most applications, enzyme will be in excess and will produce satisfactory results. Increased amounts of enzyme may generate artifacts like as smearing of bands, etc.
- 7. A minimum of 0.75 U of Color Perpetual Taq DNA Polymerase must be added per 50 μ l reaction to enable direct loading of PCR products onto an agarose gel without addition of a gel loading buffer.
- 8. In most cases there is no need to add additives to the PCR reaction. For some difficult targets such as: GC-rich sequences, sequences with complex secondary structures additives such as DMSO can be included to improve amplification. Use DMSO in concentrations of 2-8%. The recommended starting DMSO concentration (if needed) is 3%.
- 9. As a general guide for how much template DNA to use, start with a minimum 10^4 copies of the target sequence to obtain a signal in 25-35 cycles (i.e. 1 µg of 1 kb ds DNA equals 9.1 x 10^{11} molecules, 1 µg of *E. coli* genomic DNA equals 2 x 10^8 molecules, 1 µg of human genomic DNA equals 3 x 10^5 molecules).

Notes:

- 1. 2 min initial denaturation step at 94-95°C is required to inactivate the antibody and restore the polymerase activity.
- 2. Annealing temperature should be optimized for each primer set based on the primer T_m . Optimal annealing temperatures may be above or below the estimated T_m . As a starting point, use an annealing temperature 5°C below T_m .
- When amplifying long PCR products (over 5 kb):
 a. initial denaturation should be 2 min at 94°C
 - b. cycle denaturation should be 15-20 s at 94°C
 - c. use an elongation temperature of 68°C instead of 72°C.

This product is developed, designed and sold exclusively for research purposes and in vitro use only. EURx Ltd. 80-297 Gdańsk Poland ul. Przyrodników 3, NIP 957-07-05-191, KRS 0000202039 www.eurx.com.pl, orders@eurx.com.pl, *tel.* +48 58 524 06 97, *fax* +48 58 341 74 23